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The roles which spectral density of fractional frequency fluctuations, two-sample variance, and
power spectra play in different parts of the electromagnetic spectrum are introduced. Their relationship
is discussed. Data acquisition in the frequency and the time domain is considered, and examples
are given throughout the spectrum. Recently proposed methods for the characterization of a single
high-quality frequency source are briefly described. Possible difficulties and limitations in the
interpretation of measurement results are specified, mostly in the presence of a dead time between
measurements. The link between past developments in the field, such as two-sample variance and
spectral analysis from time domain measurement, and recently introduced structure functions is

emphasized.

1. INTRODUCTION

Progress in the characterization of time and
frequency stability has been initiated owing to the
work of the various authors of papers delivered
at the IEEE-NASA Symposium on Short Term
Frequency Stability [1964] and of articles published
in a special issue of the Proceedings of the IEEE
[1966] . Presently widespread definitions of fre-
quency stability have been given by Barnes ef al.
[1971]. Many of the most important articles on
the subject of time and frequency have been gath-
ered in the NBS Monograph 140 [1974]. Since that
time, many papers have been published which
outline different aspects of the field. Owing to the
extent of the subject, they will be only partly
reviewed here. We will emphasize recently
proposed principles of measurements and recent

developments in the time domain characterization’
of frequency stability. The subject of time predic-

tion and modeling as well as its use for estimation
of the spectrum of frequency fluctuations [Percival,
1978] are beyond the scope of this paper. Recent
reviews which outline several different aspects of
the field of time and frequency characterization
have been published [Barnes, 1976; Winkler, 1976;
Barnes, 1977, Rutman, 1978; Kartaschoff, 1978].

2. DEFINITIONS: MODEL OF FREQUENCY
FLUCTUATIONS

The instantaneous output voltage of a frequency
generator can be written as

Copyright © 1979 by the American Geophysical Union.

* See Appendix Note # 24

v(t) = [V, + AV ()] cos [2mvyt + ¢(2)] )

where ¥V, and v, are constants which represent the
nominal amplitude and frequency, respectively.
AV (1) and ¢(r) denote time-dependent voltage and
phase variations.

Fractional amplitude fluctuations are defined by

et)= AV )/ V, @

A power spectral density of fractional amplitude
fluctuations S,(f) can be introduced if amplitude
fluctuations are random and stationary in the wide
sense. Usually, for high-quality frequency sources,
one has

fe() <1 (€)

and amplitude fluctuations are neglected. However,
it is known that amplitude fluctuations can be
converted into phase fluctuations in electronic cir-
cuits used for frequency metrology [Barillet and
Audoin, 1976; Bava et al., 1977a] and that they
may perturb measurement of phase fluctuations
[Brendelet al., 1977] . It is then likely that amplitude
fluctuations will become the subject of more de-
tailed analysis in the future.

According to the conventional definition of in-
stantaneous frequency we have

v(t) = v + (1/2m) (1) )
In a stable frequency generator the condition
[e@)/2mv, x 1 ®)

is generally satisfied.
We will use the following notations [Barnes et
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al., 1971]:

¢ (1) and y(r) = @(1)
™y, 27y,

x(1) = ©

where x(¢) and y(¢) are the fractional phase and
frequency fluctuations, respectively. The quantity
x(1) represents the fluctuation in the time defined
by the generator considered as a clock.

At first, we will make the following assumptions:

1. The quantities x(¢) and y(¢) are random func-
tions of time with zero mean values, which implies
that systematic trends are removed [Barnes et al.,
1971]. They might be due to ageing or to imperfect
decoupling from environmental changes such as
temperature, pressure, acceleration, or voltage.
Characterization of drifts will be considered in
section 8.

2. The statistical properties of the stable fre-
quency generators are described by a model which
is stationary of order 2. This point has been fully
discussed in the literature [Barnes et al., 1971,
Boileau and Picinbono, 1976; Barnes, 1976]). This
assumption allows one to derive useful results and
to define simple data processing for the charac-
terization of frequency stability.

Actual experimental practice shows that, besides
long-term frequency drifts, the frequency of a
high-quality frequency source can be perturbed by
a superposition of independent noise processes,
which can be adequately represented by random
fluctuations having the following one-sided power
spectral density of fractional frequency fluctua-
tions:

SN= hf* M

a=-—2

S,(f) is depicted in Figure 1. Its dimensions are
Hz~'. Lower values of a may be present in the
spectral density of frequency fluctuations. They
have not been clearly identified yet because of
experimental difficulties related to very long term
data acquisition and to control of experimental
conditions for long times. Moreover, the related
noise processes may be difficult to distinguish from
systematic drifts.

Finite duration of measurements introduces a
low-frequency cutoff which prevents one from
obtaining information at Fourier frequencies smaller

Fig. 1. Asymptotic log-log plot os S, (f) for commonly encoun-
tered noise processes.

than 1/0, approximately, where 8 is the total dura-
tion of the measurement [Cutler and Searle, 1966).
Alternatively, this made it possible to invoke physi-
cal arguments to remove some possible mathemat-
ical difficulties related to the divergence of S, (/f)
as f— 0 fora < 0.

Furthermore, high piss filtering is always present
in the measuring instruments or in the frequency
generator to be characterized. It insures conver-
gence conditions at the higher-frequency side of
the power spectra for « > 0.

The spectral density of fractional phase fluctua-
tions is also often considered. From (6), one can
write, at least formally,

5.0 =(1/4n1)S,() @®

The dimensions of S,(f) are s> Hz™'. Similarly,
the spectral density of phase fluctuations ¢(7) is
such as

S,U) = Qw,)'S,(f) ®

It is expressed in (rad)? Hz™'.

The quantity .#(f) [Halford et al., 1973) is
sometimes considered to characterize phase fluc-
tuations. If phase fluctuations at frequencies >f
are small compared with 1 rad, one has

LN =18, (10)

where S_(f) is the spectral density of phase fluc-
tuations of the frequency generator considered. The
definition of .#(f) implies a connection with the
radio frequency spectrum, and its use is not recom-
mended.

Since the class of noise processes for which y(t)
is stationary is broader than that for which the
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TABLE 1. Designation of noise processes

o Designation Class of Stationarity

stationary phase
fluctuations
stationary first-order
phase increments
stationary first-order
phase increments
stationary second-order
pbase increments
stationary second-order
phase increments

2 white noise of phase

1 flicker noise of phase

0 white noise of frequency
-1 flicker noise of frequency

-2 random walk of frequency

phase is stationary [Boileau and Picinbono, 1976],
S, (f) should preferably be used in mathematical
analysis. However, itis true that many experimental
setups transduce (?) into voltage fluctuations and
allow one to experimentally determine an estimate
of its power spectral density S_(f).

Table 1 shows the designations of the noise
processes considered. It also indicates the class
of stationarity to which they pertain, as will be
justified later on.

S (f) is one of the recommended definitions of
frequency stability [Barnes et al., 1971]. It gives
the widest information on frequency deviations y (¢)
within the limits stated previously.

3. NOISE PROCESSES IN FREQUENCY GENERATORS

The white phase noise (a = 2) predominates for
[ large enough. It is the result of the additive ther-
mal (for the lower part of the electromagnetic
spectrum, including microwaves) or quantum (for

TIME AND FREQUENCY 523

in the generation of the oscillation which is due
to white noise within the bandwidth of the fre-
quency-determining element of the oscillator [Bla-
quiére, 1953a, b]. It is often masked by other types
of noise but has been observed in lasers [Siegman
and Arrathoon, 1968] and more recently in masers
[Vessotet al., 1977] . The one-sided spectral density
of fractional frequency fluctuations is then kT/PQ*
of hv,/PQ? depending on the frequency range, as
stated above. Q is the quality factor of the fre-
quency-determining element.

White noise of frequency is typical of passive
frequency standards such as cesium beam tube and
rubidium cell devices as well as stabilized lasers.
It is related to the shot noise in the detection of
the resonance to which an oscillator is slaved [Cutler
and Searle, 1966] .

Flicker noise of frequency and the random walk
frequency noise for which a = —1 and -2, respec-
tively, are sources of limitation in the long-term
frequency stability of frequency sources. They are
observed in active devices as well as passive ones.
For instance, flicker and random walk frequency
noises have been observed in quartz crystal resona-
tors [ Wainwright et al., 1974] and rubidium masers
[Vanier et al., 1977}. The origin is not well under-
stood yet. It might be connected, in the first case,
with fluctuations in the phonon energy density
[Musha, 1975].

Figures 3 and 5 show, for the purpose of illustra-
tion, S, (f) for a hydrogen maser for 10° s f=<
3 Hz [Vessot et al., 1977] and for an iodine-
stabilized He-Ne laser for 107% < £ < 100 Hz [Cére:
et al., 1978]. In both cases, S, (f) is derived from

optical frequencies) noise which is unavoidably . the results of time domain frequency measurements

superimposed on the signal generated in the oscilla-
tor [Cutler and Searle, 1966) . It leads to a one-sided
spectral density S,(f) of the form FkIY?/v}P or
Fhv f?/v} P, depending on the frequency range,
where k is Boltzmann’s constant, A& is Planck’s
constant, T is the absolute temperature, F is the
noise figure of the components under consideration,
and P is the power delivered by atoms.

The flicker phase noise (« = 1)is generated mainly
in transistors, where this noise modulates the cur-
rent [Halford et al., 1968; Healey, 1972) . The theory
of this noise is not yet very well understood.
Diffusion processes across junctions of semicon-
ductor devices may produce this noise.

White noise of frequency (a = 0) is present in
oscillators. It is the result of the noise perturbation

9,(7)

n-l?

n-ll

Fig. 2. Frequency stability, characterized by the root mean
square of the two-sample varisnce of fractional frequency
fluctuation, of a hydrogen maser. The part of the graph with
a slope of —1 is typical of white noise of frequency.
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Fig. 3. Spectral density of fractional frequency fluctuations
of a hydrogen maser. The parts of the graph with slopes 0
and 2 coincide with theoretical expectations.

(see section 6.4), as shown in Figures 2 and 4 but
is very close to theoretical limits specified above.

Itis worth pointing out here that in systems where
a frequency source is frequency slaved to a fre-
quency reference or phase locked to another fre-
quency generator the different kinds of noise in-
volved are filtered in the system [Cutler and Searle,
1966; C. Audoin, unpublished manuscript, 1976].
In these cases, at the output of the system, one
can find noise contributions pertaining to the model
(7) but appearing on the Fourier frequency scale
in an order different than that shown in Figure
1. This is depicted in Figures 6 and 7 for the case
of a cesium beam frequency standard consisting
of a good quartz crystal oscillator which is frequency
controlled by a cesium beam tube resonator.

The model for the frequency fluctuations is more
useful if the noise processes can be assumed to
be gaussian ones (in particular, momenta of all
orders can then be expressed with the help of
momenta of second order). The deviation of the
frequency being the result of a number of elementa-
ry perturbations, this assumption seems a reason-
able one. Furthermore, the normal distribution of

10- N T[s]

L "
1

- 10

Fig. 4. Frequency stability, characterized by the root mean
square of the two-sample variance of fractional frequency
fluctuations, of a He-Ne iodine-stabilized laser.

5’ ( f )[Hx"
10-11
| S —
oy ------—---
10-? f [Hz]
' n-? 1 nl o

Fig. 5. Spectral density of fractional frequency fluctuations
of a He-Ne iodine-stabilized laser. The solid line represents
the spectral density of fractional frequency fluctuations corre-
sponding to experimental results, and the dotted line represents
the expected value of S, (/).

y, the mean value of frequency fluctuations
averaged over time interval r as defined in (16),
has been experimentally checked fora = 2, 1, 0,
and —1 [Lesage and Audoin, 1973, 1977). This
is shown in Figure 8 for white noise of frequency,
for instance.

4. MEASUREMENTS IN THE FREQUENCY DOMAIN

Measurement of power spectral density of fre-
quency and phase fluctuations can be performed
in the frequency domain for Fourier frequencies
greater than a few 10 * Hz owing to the availability
of good low-frequency spectrum analyzers.

4.1.

Frequency discriminators are of current use to
characterize radio frequency and microwave gener-
ators. A resonant device such as a tuned circuit
or a microwave cavity acts as a transducer which

Use of a frequency discriminator

S, (f) ha-1

‘o.zz.

10~

D‘"l, f[Hx]
R

Fig. 6. Spectral density of fractional frequency fluctuations of
& good quartz crystal oscillator.

= See Appendix Note # 6

TN-174


Notes and Errata
See item 6 on page TN-337 of the Appendix for further information.  Click on the link for this paragraph to go there.


S’(f)[ﬂt-']

o2

'o-“

10-0 f[l-h:]
ot o ) 0! w0

Fig. 7. Spectral density of fractional frequency fluctuations
of the same quartz crystal oscillator as in Figure 6 but frequency
controlled by a Cs beam tube resonance.

transforms frequency to voltage fluctuations. This
method can be applied to optical frequency sources
t00, as shown in Figures 9 and 10. Here the source
is, for instance, a CW dye laser, and the frequency
selective device is a Fabry-Perot etalon. The second
light pass allows one to compensate for the effects
of amplitude fluctuations and to adjust to a null
the mean value of the output voltage. The slope
of this frequency discriminator equals 1 V MHz ™",
typically, with a good Fabry-Perot etalon in the
visible.

Cumulative Probability

//
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Fig. 8. Distribution of counting time results for white fre-
quency noise (cesium beam frequency standards, v+ = 10 s)
in Galtonian coordinates. Circles represent the cumulative prob-
ability corresponding to |r, — 1| with * = (r,). Solid lines
correspond to the normal distribution of the same width.
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Fig. 9. Principle of frequency to voltage transfer in a frequency
discriminator.

4.2,

This technique is well suited for the study of
frequency sources in the radio frequency domain
0.2 MHz < v, < 500 MHz, in a range where very
low noise balanced-diode mixers which utilize
Schottky barrier diodes are available. This tech-
nique has mainly been promoted by the National
Bureau of Standards [Shoaf, 1971; Walls and Stein,
1977].

Figure 11 shows the principle of the determination
of the phase fluctuations in frequency multipliers,
for instance. The two frequency multipliers are
driven by the same source. A phase shifter is
adjusted in order to satisfy the quadrature condition.

One then has @
v(t) = D¢, (1) — ¢:(¢)] (11)

where D is a constant and ¢, and ¢, are the phase
fluctuations introduced in the devices under test.
It is assumed that the mixer is properly used to
allow a balance of the phase and amplitude fluctua-
tions of the frequency source.

This technique is often used to characterize phase
fluctuations of two separate frequency sources of
the same frequency. The quadrature condition is

Use of a phase detector

F. P etalon dAiffengtial
Caser mplifier
Source [ K I“ s
A
Bhotoctlls

Fig. 10. Principle of frequency noise analysis of a dye laser.

* See Appendix Note # 25
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!

T

Frequency
Multiplier [ Sheee
tn ifter]
vartz Crystal
Frequency
Source

Phase ;
Comparalor’hu"_’ output
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Fig. 11. Principle of measurement of phase noise with a high-qualtity balanced mixer used as a phase comparator,

insured by phase locking the reference oscillator,
number 2 of Figure 12, to the oscillator under test.
Fluctuations of the output voltage u(7) at frequen-
cies f larger than the frequency cutoff of the phase
loop are proportional to phase fluctuations of
oscillator number 1. On the contrary, components
of u(t) at frequencies smaller than the above fre-
quency cutoff are representative of frequency fluc-
tuations of oscillator number 1.

The requirement of having a reference oscillator
of the same quality as the oscillator to be tested
may be inconvenient. It has recently been shown
that the phase noise of a single oscillator can be
measured by using the mixer technique, but with
a delay line [Lance et al., 1977]. Figure 13 shows
a schematic of the setup. The signal from the
frequency source is split into two channels. The
reference channel includes a phase shifter for the
purpose of adjustment. It feeds one of the mixer
inputs. The other channel delays the signal before
it is applied to the second mixer input. It can be
seen that the power spectra density of the mixer
output is proportional to 2nf f,)’S’(f), where 1,
_ is the delay. The sensitivity of this technique is
then reduced for low Fourier frequencies. However,

Frequency
Source
nl
Phase
IComparator
e |
n.2 “(t)

] - b_» output

Frequency Control

Fig. 12. Principle of phase noise measurement of oscillators.
A phase lock loop insures the phase quadrature of the two
phase-compared signals.

some signal to noise enhancement can be achieved
in a more elaborate configuration with two differen-
tial delay line systems in which cross-spectrum
analysis is performed on the signal output from
the two delay line systems [Lance et al., 1978].

Another method has been proposed to determine
the power spectrum of fractional frequency fluctua-
tions of a single high-quality frequency source
[Groslambert, 1977). It is shown in Figure 14. Two
auxiliary oscillators, which do not need to be of
the same quality as the oscillator under test, are
used. They are phase locked to the frequency
generator to be characterized. The control voltages
v,(t) and v,(¢) are appropriately filtered in order
to obtain, at their outputs, a voltage v;(¢) = K, (¢,
— @) and vy (1) = K,(¢, — @), respectively, where
K, and K, are constants and the subscripts 0, I,.
and 2 refer to the oscillator under test, oscillator
number 1, and oscillator number 2, respectively.
It can be shown that the cross-correlation function
of v{ and v; is proportional to the autocorrelation
function of the frequency fluctuations of the
oscillator under test. Its spectral density of frac-
tional frequency fluctuations can then be obtained
via Fourier transform.

4.3. Precision of measurement in the frequency
domain

A spectrum analyzer includes a filter of bandwidth
Af, centered at frequency f, a nonlinear device
which measures the power in the filtered signal,
and a low pass filter which integrates the output
signal for the time T. The integration time T is
not infinite, and the filter bandwidth Af is not
extremely narrow. Only an estimate $(f, Af, T)
of S(f) can then be obtained. Well-known results
show that the precision p in the measurement of
the power spectral density of a gaussian process
is given by
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Phase
shifter ?
Frequency Phase Low-pass Output
source | ] comparator] © | filter [
Delay 8

Fig. 13. Principle of phase noise measurement of a single-frequency source with a delay line.

p=(T-Av)~"? @

No attempt has been made, to our knowledge, to
specify p more accurately for the different noise
processes which can be encountered in frequency
metrology of stable sources.

5. MEASUREMENTS IN THE TIME DOMAIN

Time and frequency counting techniques are well
known [Cutler and Searle, 1966]. They are the
easiest to implement to provide information on the
low-frequency content (f < 1 Hz) of the power
spectra of fractional frequency fluctuations.

5.1. The beat frequency method

A beat note at frequency v, is obtained from
two frequency sources under test, with frequencies
v, and v, respectively, such that v, = v/. If Ay,

Filter ';“)
Frequency
Generator Correlator
vt St é
2() Filter !
0sc.2

Fig. 14. Principle of phase noise measurement of a single high-
quality frequency source with a correlator.

* See Appendix Note # 26

(12) % and Av, denote the frequency fluctuations of the

two sources and Av, the frequency fluctuations of
the beat note, one has

Vo Vo

(13)

The fractional frequency fluctuations of the beat
note are then proportional to those of the frequen-
cies v, and v} but multiplied by the factor vy/v,
which is much larger than unity.

With stable generators at frequencies lower than
approximately 100 GHz the frequency fluctuations
are small enough that the beat note can be at low
frequency. The counter is then used as a period
meter, and a high precision in the measurement
is achievable.

Optical frequency standards show larger fre-
quency fluctuations in absolute value. For instance,
a laser stabilized at 500 THz (A = 0.6 pm) with
a fractional frequency stability of 1 X 10" exhibits
frequency fluctuations of 50 Hz. They can be easily
measured if the beat note is at 50 MHz, say, when
the counter is used as a frequency meter. In the
case of iodine-stabilized He-Ne lasers the beat note
is easily obtained by locking the two lasers to
different hyperfine components of the considered
iodine transition. Otherwise, the frequency offset
technique is used [Barger and Hall, 1969].

5.2.

The time difference method [Allan and Daams,
1975] must be used with time standards which
deliver pulses as time scale marks. Distant time
comparison and synchronization by TV pulses, light
pulses, Loran-C pulses, for instance, pertain to this
category. It provides information on the relative
phases of the two clocks under test.

Time interval measurements being very precise

The time difference method
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Mixer
PEQUERERl  1Phase
S:g'i“ " |Shifter
Low Pass Low Pass
Filter Filter
IV,—V;! Time IV,-V,;I
Interval
Counter

Fig. 15. Principle of the time difference method.

(a precision of 10-100 ns is typical, depending on
the class of the counter), they are also used with
c.w. frequency generators, as shown in Figure 15.
This method is then well suited to the case in which
the frequency sources under test have the same
nominal frequency v,, ¢.g., atomic frequency stan-
dards. An auxiliary frequency source, such as a
frequency synthesizer, with frequency v, allows
one to obtain, at the output of the mixers, two
beat notes at the desired frequency v, = |y, —
vol. After amplification the zero crossing of one
of the beat notes starts the time interval counter,
and the zero crossing of the other beat note stops
it. One has

x, = (ve/v Xxg — xg) (14

where x, is the fractional phase fluctuation of the
beat note and x, and x, that of the two frequency
standards. For instance, with v, = 5§ MHz, v, =
0.5 Hz, and a precision in the time interval measure-
ment of 0.1 us a precision of 10™'* s at the nominal
frequency v, is achieved.

6. CHARACTERIZATION OF FREQUENCY STABILITY
IN THE TIME DOMAIN

6.1. Significance of experimental data

It is well established that measurement in the
time domain with an electronic counter samples
phase increments and gives A_¢(¢,) defined as

Aot)=o¢t.+7 - @(t,) 15)

The phase increment A ¢(t,) is related to y,, the
average over time interval [¢,, ¢, + 7] of fractional
frequency fluctuations. We have

_— lk#" l
W=— S y(t')dt' = Ao (h) (16)
T 2

" m™T
where v, is the mean frequency of the processed
signal. _

Samples of y, can be combined in many different
ways. Some of those which have been considered
will be reviewed here. On the other hand, the
number of samples is finite, and the question arises
as to the related uncertainty in the characterization
of frequency stability and of the best use of the
data.

6.2. N-sample variance

The sequence of measurement is as shown in
Figure 16. The mean duration of each measurement
is 7, and T is the time interval between the begin-
nings of them.

In statistical estimation it is common to consider
sample variance [Papoulis, 1965]. The N-sample
variance of y, is defined as

1 N—l’l . | N-I — 2
o (N, T, D=y _1 (h-;zh)

-1 k=0 k=0

17)

where the factor N/(N — 1) removes bias in the
estimation.

The dependence of the expectation value of the
N-sample variance on the number N of samples,
the sample time 7, and the power spectral density
has been considered by Allan [1966]. We will only
consider special cases in the following.

It can be shown that computation of the average
of the N-sample variance introduces a filtering of
the power spectral density S, (f) [Barnes et al.,
1971]. We have

(0’:(N, T,7)) = S sy(/)l”(f)|24f (18)
1]
H (f)is the transfer function of a linear filter which
has the following expression:

aepo [sin‘rrf'r]z{l [shwaT ]’}
=5 nfr NsinnfT

(19)

LT T T

I ]

. T T
! ! ! o b

'u 'h.l t

Fig. 16. Sequence of time domain measurement.
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For f such that

nfT< | (20)
we have
NN +1)
|H(f))? = — (fT) Q1)

Equation (21) shows that for finite N the integral
in (18) will converge at the lower limit for a =
—1 and a = -2, as well as for a = 2, 1, and
0. One sees that very low frequency components
of S,(f) are best climinated for small values of
N.

6.3. Variance of time-averaged frequency
Sluctuations

When N goes to infinity, (o] (e, 7, 7)) becomes
a’(y,), the variance of time-averaged frequency
fluctuations or of the first difference of phase
fluctuations [Cutler and Searle, 1966] as given by

) = ()Y
where angle brackets denote mathematical expecta-
tion.

In the presence of a single-pole low-pass filter

with cutoff frequency f, we have the following re-
lation between o3(y,) and S,(/):

22

—_ - |
0=\ SV T IO 2
o (%) So U)l+(_f/f,)' DI 23
with
1H,0I* = [ s':;f T] 24y

Equation (24) shows that o’(y,) converges for a
= 2, 1, O but diverges for flicker noise of frequency
(e = —1) and random walk of frequency (a = —2).
The variance o’ (y,)is no longer used to characterize
frequency stability. However, it is useful to relate
the RF power spectral density to S,(f) [Rutman,
1974a] .

6.4. Two-sample variance
For the special case N = 2, (17) gives

(22 T, ) = 3 (Gaer = F)) @5)
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and we have
* 1
( : 2' T, ) = sy 2 H2 zd
o,( 1) So U)__—l+(f/f,) |H.(f)|*df
(26)
with
: 2
(DI = 2[ o/ ] smnfT? @)
nfT

For small f, such that wfT < 1, |H,(f)|* varies
asf. The integral in (26) is thus defined for flicker
noise of frequency (e« = —1) and random walk of
frequency (a« = —2), as well as for « = 2, 1, and
0. It is easy to show that the quantity (y,,, —
¥,) represents a second-order difference of phase
fluctuations. It follows that second-order phase
increments are stationary for a = —1 and -2 (as
specified in Table 1).

6.4.1. Two-sample variance without dead time.
The two-sample variance (Allan variance) without
dead time, for T = +, is now generally accepted
as the measure of frequency stability in the time
domain. One sets

a:(-r) = (03(2, T, 1)) (28)
Table 2 gives asymptotic expressions of aj('r) in
the cases 2mf,7 > 1 and 2nf_ 1 < 1. Expressions
of oj (1) in the presence of a sharp high-frequency
cutoff f, have been given by Barnes et al. [1971]
for the case 2wf, v >» 1.

One sees in Table 2 that o’ (1) has a characteristic
7 dependence for each type of noise considered,

TABLE 2. Asymptotic expressions of the two-sample variance
for the noise processes considered

a)(7)
S, 2nf > 1 nfrx ]
hs? 3h,f hzf2
8wr’ 2+
34, In 2w f.7)
S — 2h,f2In2
40y
) 2,2 2
ho - -3-‘" "ofc"'
2t
a_ S 2h_,1n2 2nih_f4
-2 21': 3 2
hof —;—h_,‘r nh_fr

%

&

* See Appendix Note # 27

TN-179


Notes and Errata
See item 27 on page TN-340 of the Appendix for further information.  Click on the link for this table to go there.


530 LESAGE AND AUDOIN

such as 0(r) = k/*. This is specified as follows
for 2nf.r > I

a |
2 2
1 p]
0 1

-1 0

-2 -1

For a = —1 the g (1) graph is a horizontal line,
which justifies the designation ‘flicker floor’ for
that part of the graph.

Usually, under experimental conditions the rela-
tion 2nf.v > | is satisfied. The noise processes
which perturb the oscillation can then be identified
from a o, () graph if it is assumed that the afore-
mentioned model of frequency fluctuations is valid.
Table 2 shows in which cases o)(r) depends on
the frequency cutoff. The latter must then be
specified.

The case 2=nf.r < 1 is useful for the analysis
of the effect of frequency of phase servocontrol
loops where the frequency fluctuations of the fre-
quency reference are low-pass filtered. Bias func-
tions have been given to relate (1) the two-sample
variance with and without dead time and (2) the
two-sample variance to the N-sample variance
[Barnes et al., 1971].

6.4.2. Two-sample variance with dead time. %

General expressions for the N-sample variance with
dead time have been given (Barnes et al., 1971]
for useful values of a if the condition 2w/, 7 >>
1 is satisfied. The case of the two-Ssample variance
with dead time has not been emphasized enough
yet. Table 3 compares the two-sample variance with
and without dead time when the condition 2nf_r
> 1 is fulfilled. The condition of negligible dead

TABLE 3. Comparison of the two-sample variance with and
without dead time for 2nf_r > 1

U:(zi T: 7)
SN Mf(T-D<l nf(T-7)>1
by Iy, [9A
8t 4mr’
by 38, In 2nf.7) h in(2nf7)
' 4nis? 2n’e?
ho ho/2'r holzr
h st 2h_,1n2 h i (Th)T>=
27
bt 5 h_,t n*h_, T

* See Appendix Note # 28

LI a}ll,l‘,rl»

0! 0! 1 0 00

Fig. 17. The solid line represents the variation of A_, (o}(2,
T, 7)) versus v/(T - =) for the flicker noise of frequency.
The dotted line represents the asymptotic value for (T — 1)
<

time is then 2uf (T — 1) < 1. Results for 2nf_r
<< 1 are also available {P. Lesage and C. Audoin,
private communication, 1978). Table 3 shows that
in the presence of -dead time, i.e., 2nf (T - 1)
> 1, the expression for the two-sample variance
is noticeably modified for @ = —1 and —2.

The case of the flicker noise of frequency is
particularly interesting. Figure 17 shows the varia-
tion of the two-sample variance with dead time
as a function of /(T — 7). The flicker floor does
not exist anymore if the value of this ratio is
modified when the sampling time t is changed. The
identification of the noise process which perturbs
the oscillation might then be wrong if the effect
of dead time is not taken into account.

6.5. Precision in the estimation of the two-sample
variance

Measurements are always of finite duration, and
therefore the number of available values of y, is
finite. We are then faced with the problem of the
precision in the estimation of the time domain
frequency stability measurement. This is an impor-
tant one because successive characterizations of
the frequency stability of a given device allow one
to get information on the stationarity of the pro-
cesses involved in the perturbation of its frequency
but within the limits of the precision of the charac-
terization. Precision in the estimation of the fre-
quency stability of individual oscillators of a set
of p frequency generators (p > 2) [Gray and Allan,

** See Appendix Note # 29
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1974] critically depends on the precision of the
p(p — 1)/2 frequency comparisons which can be
performed by arranging oscillators in pairs. Fur-
thermore, the uncertainty in the determination of
o,(7) translates directly into the uncertainty in
determining the h, coefficients if the frequency
generator is perturbed by noise processes modeled
by (7).

The precision in the estimation of time domain
measurements of frequency stability has been con-
sidered by several authors [Tausworthe, 1972; Le-
sage and Audoin, 1973, Yoshimura, 1978). It has
been determined for most of the experimental
situations which can be encountered in the two-
sample variance characterization of frequency
stability, with or without dead time (P. Lesage and
C. Audoin, private communication, 1978).

Calculation of the expectation value of the two-
sample variance according to (25) requires an infinite
number of data. But, in practice, only m counting
results are available, and one calculates the estimat-
ed average of the two-sample variance as follows:

-1 IE (Vrer = yk

One can easxly show that the expectation value
of 83(2, T, 7, m) equals the averaged two-sample
variance with dead time. Thus the finite number
of measurements does not introduce bias in the
estimation of the two-sample variance.

The estimated averaged two-sample variance
(EATSV) being a random function of m, we need
to characterize the uncertainty" in the estimation.
We thus introduce the variance of the EATSYV,
according to the common understanding of &
variance. We set

1852, T, v, m)

= ([0} T,7,m) - (0;, T, D] ")
With the expression (29) of the EATSV we get
o’ [0;(2, T, 1, m)]

[Z(m -1 ]2<7_z::2318,> 1))

E2))

82, T+, m= 29)

(30

with
Bi= (Vi = 7)) =202, T, 7))

The classical law of large numbers [Papoulis,
1965] which states that the true variance of a sum

. A(m) =

TIME AND FREQUENCY 531

of (m — 1) uncorrelated random variables decreases
as 1/(m — 1), even for small values of (m — 1),
does not apply here. We are considering the quanti-
ties 8, which are correlated because two adjacent
differences (y,,, — y,) and (¥,,, — ¥,.,) are ob-
viously not independent.

Equation (31) can also be written as

-1

l m-2

o’ 832, T, 7, m)) ——l——[l:‘l

_— —1-0r,| @
Y 2m-n 2" )] &3

with !
rk = (B,Bi-s)

I',, which does not depend on m, represents the
autocorrelation coefficient of B, and B,_,. Since
the same data are used in two adjacent pairs, the
autocorrelation coefficient I';, and possibly others,
differs from zero. Equation (33) then shows that
the 1/(m — 1) dependence also occurs for the
random variables considered, but asymptotically for
large enough values of (m — 1).

The variance of the EATSV can be related to
S,(f) if it is assumed that the quantities y, are
normally distributed. This is a reasonable assump-
tion, as shown in section 2.

It is useful to introduce A(m), the fractional
deviation of 83(2, T 7, m) defined as

G4

8@, T,r,m)— ()2, T, 1))
(0)(2, T, 1)

(33)

The standard deviation o [A(m)] defines the preci-
sion in the estimation of the two-sample variance.
Expressions for o [A(m)] which are valid for m
> 2 have been established for all possible values
of 2nf.r and 2nf (T — <) but will not be given
here.

In practice, the time domain frequency stability
of a frequency source is characterized by the
standard deviation (832, T, 7, m)] '/>. We there-
fore consider 8 defined as

e Tyml' - m'?
- (PR T,

(36)

o(d) specifies the precision in the estimation of
the time domain frequency stability measurement
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1

) 0

°

10

Fig. 18. Variation of K, as a function of r = T/1 for the
commonly encountered noise processes and for 2nf,t = 10.

from a limited number of data and allows one to
draw error bars on a frequency stability graph.
For 2nf_t > |1 and m >> 1 we have

o(® =K m'"? 37N

The values of K_ are given as follows subject to
the condition that the dead time is negligible, i.e.,
nf(T-1) < 1:

a K,
2 0.99
1 0.99
0 0.87
-1 0.77
-2 0.75

In the presence of dead time the values of K
depend on the noise process considered as well
as the values of 2=nf.+ and r = T/+. Figure 18,
valid for 2nf_r = 10 shows that the dependence
of K_ with dead time is especially pronounced in
the vicinity of r = 1 for a = 1 and 2.

7. CHARACTERIZATION OF FREQUENCY STABILITY
VIA FILTERING OF PHASE OR FREQUENCY NOISE

Equations (27) and (28) show that the definition
of the time domain measurement of frequency
stability o’ (1) involves a filtering of S, (f) in a linear
filter. Figure 19 shows the impulse response of this
filter, which represents the sequence of measure-

h(Hd

O A=

Y-

-1

—

Fig. 19. Impuise response of a linear filter which represents
computation of two-sample variance.

ment for T = r, and Figure 20 depicts the related
transfer function. One can also consider the effect
of filtering a voltage proportional to y(t) or x(t)
in a physically realizable analog filter.

A high pass filter of cutoff frequency 1/t has
been considered [Rutman, 1974b; Rutman and
Sauvage, 1974]. Its input receives a voltage propor-
tional to x(¢). It is provided by a mixer used as
a phase comparator. The rms value of the filtered
signal is measured. When the frequency cutoff is
changed, this rms value shows the same u versus
a dependence as shown in section 6.4.1. More
interesting is a bandpass filter centered at the
variable frequency f = 1/2r but with a fixed value
of its quality factor. It allows one to distinguish
white and flicker noise of phase, as it gives p =
3 for @ = 2; the p versus a dependence being
otherwise unchanged for a = 1, 0, -1, and —2.

Similarly, a frequency discriminator, giving an
output proportional to y(¢), followed by two cas-
caded resistance-capacitance (RC) filters and a:rms
voltmeter allows one to obtain a useful approxi-
mation of the two-sample variance. The filters
insure low-pass and high-pass filtering with RC =
t/2 [Wiley, 1977].

g ()

[=]]
n
IS
(-

2ft

Fig. 20. Transfer function of the linear filter with impulse
response shown in Figure 19.
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8. SPECTRAL ANALYSIS INFERRED FROM TIME
DOMAIN MEASUREMENTS

The methods of time domain characterization of
frequency stability reviewed above allow one to
identify noise process if they are described by

2

S,N= ht
aw=-2
This may not be the case. Furthermore, it is of
interest to determine the power spectral density
of fractional frequency fluctuations for Fourier
frequencies lower than 1 Hz. In this region, time
domain measurements are the most convenient, and
the question arises as to their best use for spectral
analysis.

(8)

8.1.

Equations (24) and (27) show that calculation of
the variance of the second difference of phase
fluctuations (the two-sample variance) involves a
more selective filtering than calculation of the
variance of the first difference of phase fluctuations.
One can then consider higher-order differences
[Barnes, 1966; Lesage and Audoin, 1975a, b]. The
nth-order difference of phase fluctuations is denot-
ed as "A; (1), where T and T have the same
meaning as in section 6.1. and 6.2. This nth dif-
ference is defined by the following recursive equa-
tion:

Selective numerical filterirg

"Ar.e(t) = ('""A,‘,‘p(t, +T)-"""a 7. ®(l) (39
which introduces binomial coefficients C’_,. We
have

A e) = 2 =n'c,_lelt,+(n-1-0DT+1]

im0
—¢ly+(n-1-0)T]} (40

The transfer function H,(f, T, 1) of the linear filter
which represents the calculation of the variance
of the nth difference of phase fluctuations is given
by

n-1

y GinnfT)"'sinnfr

nT

H,(. T, )l = @n
It should be pointed out that for fr <« I, one
has

HU T0=QunfT)"" fr<xl 42)
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hygit 4
A
)
9
7
CW"T
6
<
c3 -[ .
. 19 n D rr_—c\9' -
-10% U +w01 t

vFi;. 21. Impulse response of a linear filter which represents
computation of the variance of the 20th difference of phase
fluctuations. C| represents binomial coefficients.

Figure 21 shows the impulse response of the linear
filter which represents the calculation of the
variance of the 20th difference of phase fluctua-
tions, and Figure 22 shows the related transfer
function. A selective filtering is then involved
around frequency 1/2r.

_Such a variance is also known as a modified
Hadamard variance [Baugh, 1971). The spurious
responses at frequencies (2! + 1)/27, where [ is
an integer, can be eliminated by a proper weighting

)
|Hzo (o) I
3110°
2110°L
'l '
. J\ A A DT
0 1 3 S 7

Fig. 22. Transfer function of the linear filter considered in Figure
21,
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of measurement results or by filtering with the help
of an analog filter [Groslambert, 1976).

Such a technique of linear filtering has been used
to show that good quartz crystal oscillators exhibit
flicker noise of frequency for Fourier frequencies
as low as 10~ Hz [Lesage and Audoin, 1975b].
Furthermore, it is well suited to the design of
automated measurement setups [Peregrino and
Ricci, 1976; Groslambert, 1977].

The best use of experimental time domain data
for selective filtering has been considered by Boi-
leau [1976].

8.2. High-pass filtering

If frequency fluctuations y(z) are filtered in an
ideal high-pass filter with transfer function G,(f,,
/) such that

0 f</,
Go(fpf) = { l f >f| (43)
its output z(¢) is such that
44)

ot = X Gy f)S, (N = X SN
] N
Equation (44) shows that the derivative of o? is
-S,(f), and spectral analysis, and therefore
characterization of frequency stability, are possible,
in principle, by high-pass filtering.

Possible realization of the high-pass filter by
techniques of digital data processing have been
specified, such as the method of finite-time variance
and the method of finite-time frequency control.
Processing of finite-time data is aimed to properly
deal with the nonintegrable singularity of the power
spectral density at v = 0 [Boileau, 1975; Boileau
and Picinbono, 1976}. The method is well suited
to the analysis of drifts or slow frequency changes.
Practical use of this method has not been reported
yet.

8.3.

It has been shown in section 8.1. that spectral
analysis from the Hadamard variance or its modified
forms requires a series of measurements at time
interval v in order to specify the spectral density
at frequency 1/2+. Another point of view has been
considered [Boileau and Lecourtier, 1977). From
a set of measurements of y,, sampled at frequency
1/, it allows one to obtain an estimation of the

Use of the sample spectral density

spectral density for discrete values of the Fourier
frequency.

9. STRUCTURE FUNCTIONS OF OSCILLATOR
FRACTIONAL PHASE AND FREQUENCY
FLUCTUATIONS

Interest in the variance of nth-order difference
of phase fluctuations was recognized carly in the
field of time keeping (see for instance, Barnes
[1966]). This can be easily understood from (43),
which shows that an efficient filtering of low-
frequency components of frequency fluctuations
is then introduced. It allows one to deal properly
with frequency drifts, which will now be considered,
and poles of S, (f) of order 2(n — 1) at the origin.
It is equivalent to saying that the nth difference
of phase fluctuations allows one to consider random
processes with stationary nth-order phase incre-
ments.

This question has been formalized by Lindsey
and Chie [1976, 1977], who introduce structure
functions of oscillator phase fluctuations. The nth
order structure fuanction of phase fluctuations is
nothing else but the variance of the nth difference
of phase fluctuations, as considered in section 8.
Then, by definition, the nth-order structure function
of fractional phase fluctuations is given by

D@ =E(["s, . x(t)]"}

where E { -} means expectation value. The fractional
phase (or the clock reading) at time 7, is x(z,).
We assume T = 7.

Let us consider an oscillator, the phase ¢’(f)
of which is of the following form except for an
additive constant:

45)

H ’k
¢'(1) = 2 D=+ 00) (46)

where Q, is a random variable modeling the kth-
order frequency drift and ¢(¢) represents random
phase fluctuations. We then have

! ‘k
x'@)= Z; d,_, F + x(1) 47
and
1-1 th
Y= E d.;‘—! +y() (48)

k=1

where d, = Q, /2mv, is the normalized drift coeffi-
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cient and x(r) and y(7) have the same meaning as
in the preceding sections. The notations x’ and y’
refer to an oscillator with drift.

It can then be shown that we have

D™ (1) =1"E[d}_)]

2 ® sin®*(nf1) _
+2 So s’m_—(an)’ adf I=n (49
and
() 328 o sin®* (nf1)
D®() =2 So Sy(f)——~(2‘wf)2 d I>n (50)

If one applies (49) to the case of an oscillator
without drift, one can easily show that the following
equations are satisfied:

a*(y,) = (1/+*) D7) (S1)

and

o3 () = (1/2r*) D (v (%2)

This is indeed not surprising because apart from
more or less complicated mathematical formalism
the definitions of the considered variances and
structure functions are closely related, as has been
emphasized here.

Relations between sample variance and structure
functions have been given by Lindsey and Chie
[1976], whereas the relation between structure
functions and several different approaches of fre-
quency stability characterization has been analyzed
by Rutman [1977, 1978).

For the generally accepted noise model defined
by (7) the  dependence of higher-order structure
functions is the same as the two-sample vanance,
as shown in Table 4 [Lindsey and Chie, 1978b].
As stated above, structure functions of order n
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allow one to consider spectral densities which vary
as f* at the origin with a = —2(n - 1). For instance,
for n = 3 it is possible to characterize frequency
fluctuations of an oscillator with a power spectral
density of fractional frequency fluctuations given
by S,(/) = 22__, hf°. This oscillator exhibits
stationary third-order increments of phase fluctua-
tions.

In the presence of a frequency drift described
by a polynomial of degree [ ~ 1, structure functions
of degree n < I are meaningless: their computation
yields a time-dependent result. For n = [ the /th
structure function shows a long-term r dependence
proportional to 7¥. This dependence disappears for
n > l. Although a power spectral density of the
form f -~V would also give the structure functions
a variation of the form 7%, this variation does not
depend on n, provided that the function is meaning-
ful. It is then possible, at least in principle, to
identify frequency drifts and to specify their order.
This is illustrated in Figure 23 according to Lindsey
and Chie [1978b]. However, there are not yet
experimental proofs that such a characterization
is achievable in practice.

10. POWER SPECTRAL DENSITY OF STABLE
FREQUENCY SOURCES

The power emitted by a source of time-dependent
voltage v(¢) given by (1) is S, (v) dv in the frequency
range [v, v + dv], where S, (v) is the power spectral
density of the source. The dimensions of S, (v) are
V2 Hz~'. The main interest of power spectral
density, in frequency metrology, is related to high-
order frequency multiplication. We will only intro-
duce the subject by giving the relations between
S,(v) and S _(f) and stating present problems in
the field.

TABLE 4. Structure functions of orders 1, 2, 3, and 4 for fractional phase fluctuations of commonly encountered noise processes
for 2nfyr > |

5, D) D2(x) DO() D)
hof? ;1'7 oty 2—%; hof, “32- WA 2—31-75-1- hot,
hf E}r;h,ln(wj;f) i%h,ln(nf,f) ;S;Il,ln(ﬂf.f) g;h,ln(«fp)
h, 1hyr hot 3hor 10h,r
hos' 4h_,vIn2 6.75h_,1° 20.7h_g°
hoys? ;-n’h_,-r’ 2nh_y1’ SN K

From Lindsey and Chie [1978b)
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0
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{fticker)
o ‘ t [s)
1 0 "

Fig. 23. (Solid line) Two-sample variance of an oscillator
showing a linear frequency drift of 10”'° per day and flicker
noise of frequency given by S,(f) = 7.2 X 107 ™', (Dotted
line) The third difference of fractional phase fluctuation is
independent of the drift (according to Lindsey and Chie [1978b].

Negligible amplitude noise and gaussian phase
fluctuations being assumed, it is well known that
the autocorrelation function of v() is R, (7) given
by

Vi _
R(v) = Py cos2mv, T exp [~1(2mv,) o (1,)] (53)
As o*(y,) is only defined for stationary phase
fluctuations and for phase fluctuations with station-

ary first increments, the same is true for R (1) and
therefore S, (f).

10.1.

This is the simplest to deal with. If the frequency
of the source is perturbed by a broadband white
noise of frequency, one has S, (f) = h, and (y.)
= (h,/21). Whence

White noise of frequency

(39
T

<

Vs |l
R (1) = T cos 2y T €Xp (-—-—)
where 7, is the coherence time of the signal. We
have

7, = (mv2hy) ! (33)

The one-sided power spectral density is then repre-
sented by a Lorentzian given by

S.() = p2 2nAv
v *wan)? + 2n(v - v}

(56)

where Av is the half width at half maximum of
the power spectra defined as

2Av = mih, Y]

We obviously have 2wAv - r, = 1. If oscillators
are considered, one has h, = kT/PQ? in the
radiofrequency and microwave domain and A, =
hv,/PQ* in the optical frequency domain, where
P is the power delivered by the oscillator and Q
the quality factor of the frequency-determining
element. Table 5 gives theoretical values of co-
herence time and linewidth of good oscillators. It
is only intended to illustrate a comparison, often
made, of the spectral purity of oscillators. It must
be pointed out that, in practice, other noise pro-
cesses exist which modify these results. Even any
meaning of 7, and Av is removed if R, (7) is not
defined.

Multiplication of the frequency by n multiplies
Av and divides t_ by the factor n’.

10.2.

Presently available good quartz oscillators are
affected by white noise of phase. It is easy to show
from the definition (16) of y, that the following
equation is satisfied:

t 2mvere(y)] 2 = R,(0) - R, @)

where R (1) denotes the autocorrelation function
of the stationary phase fluctuations ¢(?).
The expression of the one-sided S, (v) then fol-
lows [Rutman, 1974a; Lindsey and Chie, 1978a]:
2
S.0) == e OB - w)

White noise of phase

(38

+S,(v-v)+3S,(v)*S,(v)+ ] (59

where the asterisk denotes convolution and the
bracket contains an infinite set of multiple-convolu-
tion products of S_(v) by itself. Such an equation
is not easily tractable. It is the reason why the

TABLE 5. Theoretical values of correlation time and power
spectrum linewidth for various oscillators
Oscillator vo, Hz h,, Hz™' 1,8 2Av, Hz
5-MHz
quariz xtal  §$x 10° 4x 1077 10" 3x 107"
H maser 14x10° 4x1077 107 3x 107t
He-Nelaser Sx 10 3x107® 107 30
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approximation of small-phase fluctuations is often
made. If R (0) = ¢ < 1, one has
Vo
§,(v) = Y e BV —vy)+ S, (v~ w)l (60)

In this approximation the power spectrum consists
of a carrier at frequency v, around which the
spectrum of the phase fluctuations is translated.

If the frequency of the signal is multiplied by
n, ge mean s&g_arcd frequency fluctuation becomes
n*¢>. If n*¢> « 1, the power spectral density
is then given by

V: —nel 2

S,(v)= T e W —nv,) + 0SS, (v - w)] (61)
The power in the carrier decreases, and the power
in the pedestal increases. The relative powers in

tha carriar P and in tha nadactal P ara than sivan
Uw valiivi 4 ¢ Qallu 11 wuv PGUGDIM ‘P alv vl yevu
by
e §
P.=c" (62)
T
P=1-e¢ 63)

respectively, where ¢ represents the mean squared
value of phase fluctuations at the signal frequency
considered. It has been proved that (62) and (63)
are valid, even if the condition ¢? < 1 is not
satisfied (F. Clerc, private communication, 1977).

§ Relative Power (48)

-S5O

o 0! o' 1 o o
@Qllilm)’

Fig. 24. Variation of the relative power in the carrier P, and
the pedestal P, as a function of ¢°, the mean squared phase
fluctuations.
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Figure 24 shows the variation of P_ and P, as
a function of ¢*. One easily understands that the
carrier may disappear if the multiplicative factor
is high enough. This has been theoretically and
experimentally investigated by Walls and de Marchi
[1975], Bava et al. {1977b], and Godone et al.
[1978]. A signal has been synthesized at 761 GHz,
starting from a 5-MHz quartz oscillator, which
verifies theoretical conclusions.

10.3.

Much work remains to be done to analyze proper-
ly the effect of noise such as the flicker noise of
frequency or the random walk of frequency which
contributes power very close to the carrier. The
very interesting semiempirical approach by Halford
[1971] has not yet been justified either theoretically
or experimentally in a convincing manner.

Other noise processes

11. CONCLUSION

Widely used theoretical and experimental meth-
ods for the characterization of frequency stability
in the time and frequency domain have been out-
lined. Recently used or proposed experimental
methods have been reviewed. The effect of dead
time on the interpretation of time domain measure-
ments, as well as on their precision has been
emphasized. Recently introduced structure func-
tions have been considered as well as their interest
for the elimination of frequency drifts. The prob-
lems in the relation between the radiofrequency
power spectral density and the power spectral
density of phase fluctuations have been briefly
summarized.
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